J. Chem. Research (S), 2003, 599-600

Novel and efficient solid-phase synthesis of 4,6-disubstituted 4,5-dihydro-3(2*H***)-pyridazinones†**

Jing Tanga and Xian Huanga,b *

aDepartment of Chemistry, Zhejiang University, Xixi Campus, Hangzhou 310 028, P.R. China

bState Key Laboratory of Organometallic Chemistry,Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200 032, P.R. China

The resin-bound 5-monosubstituted cyclic malonic ester **3** was generated and reacted with an α–bromoketone to give the corresponding 5,5-disubstituted cyclic malonic ester resin (**4**). Subsequent reaction with hydrazine resulted in cyclisation with concomitant cleavage from the polymeric support to release the final products, 4,6-disubstituted 4,5-dihydro-3(2*H*)-pyridazinones, in good yield and high purity.

Keywords: solid phase synthesis, pyridazinones, Meldrum's acid, Merrifield resin

Meldrum's acid, 2,2-dimethyl-1,3-dioxane-4,6-dione, is a versatile synthetic agent due to its susceptibility to electrophilic attack at position 5 (via its anion) and nucleophilic attack at positions 4 and 6 along with ring-opening.^{1a,b} We have previously synthesised many heterocyclic compounds from Meldrum's acid in solution-phase.^{1c,d} On the other hand, solidphase synthesis has emerged as an important method for construction of organic compound libraries.²⁻⁴ Compared with traditional solution-phase synthetic approaches, the products of solid-phase synthesis can be easily purified with a simple wash from insoluble resin, making this method interesting in both technical and practical terms.

4,5-Dihydro-3(2*H*)-pyridazinones have been identified as an important class of heterocyclic compound in medicinal chemistry.5 They have wide pharmacological activity, for example in inhibition of platelet aggregation,^{5a} reduction of blood pressure,^{5b} positive inotropic activity, and others.^{5c} 4, 5-Dihydro-3(2*H*)–pyridazinones derivatives can be obtained by the reaction of hydrazine with appropriately substituted

Scheme 1 *Reagents and conditions:* (a) sodium ethyl acetoacetate, DMF, 80 °C, 16h; (b) DMSO, NaCl, 140 °C, 48h (c) monosubstituted malonic acid, acetic anhydride, conc.H2SO4 ; (d) NaOAc acetic acid α–bromomethylketone, DMF, rt, 24h; (e) hydrazine hydrate, DMF, rt, 17h; (f) 4M HCl, reflux, 6h

4-oxobutanoic acids or their esters.5d However, 4,6-disubstituted 4,5-dihydro-3(2*H*)-pyridazinones are not easily synthesised in this way because 2,4-disubstituted 4-oxobutanoic acids cannot easily be prepared. As part of our continuing interest in Meldrum's acid chemistry, and inspired by the solution-phase strategies developed earlier,⁶ we have developed a synthesis of a series of 4,6-disubstituted 4,5-dihydro-3(2*H*)-pyridazinones by a solid-phase process. Our approach is outlined in Scheme 1.

The commercially available Merrifield resin (**1**) was reacted with sodium ethyl acetoacetate in DMF at 80 °C, then decarboxylated with sodium chloride at 140 °C to give the ketone resin **2**. ⁷ The formation of resin **2** was supported by a comparative FTIR spectroscopy (KBr pellet) study. The FTIR spectrum shows a strong $v_{C=O}$ band at 1717 cm⁻¹. The resin-bound 5-monosubstituted cyclic malonic ester (**3**) could efficiently be built up via reaction of the resin-bound ketone with the monoalkylated malonic acid and acetic anhydride in the presence of concentrated H_2SO_4 . The IR spectrum of the cyclic malonic ester resin **3** showed carbonyl peaks at 1767 and 1794 cm-1. Then the resin-bound 5-monosubstituted cyclic malonic ester **3** smoothly reacted with α-bromoketones to give resin **4** in the presence of acetic acid and anhydrous sodium acetate in dimethylformamide at room temperature for 24h, because resin **3** tends to be attacked by electrophilic agents at C-5 easily. IR spectroscopic data of the resin **4** indicated that the ester carbonyl peaks shifted to 1717cm-1 and 1743cm-1 with a new strong peak at 1686cm-1 typical for an ArC=O ketone carbonyl peak.

The resin **4** is equivalent to a 2,4-disubstituted 1,4-dicarbonyl compound and can easily be attacked by binucleophilic agents, followed by loss of the ketone and $CO₂$ fragments to afford the heterocyclic compounds. Accordingly, **4** was treated with hydrazine to afford the 4,6-disubstituted 4,5-dihydro-3(2*H*) pyridazinones (**5**) and resin hydrazone (**6**). The product **5** can be obtained in excellent purity by simple filtration. Resin **2** can be recovered by boiling the resin hydrazone **6** with 4M HCl under reflux for 6h. The recovered resin showed IR spectral data identical to those of the initial ketone resin and was reused successfully to afford the product **5** in nearly the same yield and purity (entries **10** and **11**, Table **1**). One significant advantage of this approach is that cleavage occurred concurrently with the cyclisation to release the final products into solution. Unfortunately, when a substituted hydrazine was used we were unable to isolate any product.

In summary, we have developed a new method for the preparation of resin-bound 5-substituted cyclic malonic ester and a novel solid-phase synthetic route to 4,6-disubstituted 4,5 dihydro-3(2*H*)-pyridazinoes. The mild reaction conditions, good yield and high purity make it possible for automation.

^{*} To receive any correspondence. E-mail: huangx@mail.hz.zj

[†] This is a Short Paper, there is therefore no corresponding material in *J Chem. Research (M).*

Table 1 4,6-Disubstituted 4,5-dihydro-3(2*H*)-pyridazinonesa

Entry	R ¹	R ²	Yieldb	Purity ^c
1	n -C ₄ H ₉	C_6H_5	82	90
2	$n - C_4$ H ₉	4 -CIC $_6$ H ₄	86	92
3	n -C ₄ H ₉	4 -CH ₃ C ₆ H ₄	81	94
4	C_2H_5	C_6H_5	70	88
5	C_2H_5	$4-CIC_6H_4$	73	91
6	C_2H_5	4 -CH ₃ C ₆ H ₄	69	89
7	PhCH ₂	C_6H_5	77	91
8	PhCH ₂	$4-CIC_6H_4$	84	90
9	PhCH ₂	4 -CH ₃ C ₆ H ₄	78	93
10	$n - C_4H_9$	C_6H_5	80	90 ^d
11	$n - C_4H_9$	4 -CIC $_6$ H ₄	84	90 ^d

 a All compounds were assayed by $1H$ NMR, MS, IR.

bThe vields are based on the loading of the substituted cyclic malonic ester resin **3**.

^cThe purity was determined by ¹H NMR.

^dthe recovered resin was used (the 3rd run).

Further work is in progress on the solid-phase synthesis of heterocyclic compounds via the substituted resin-bound cyclic malonic esters.

Experimental

¹H NMR spectra were recorded on a Bruker Avance 400 MHz instrument using CDCl₃ as the solvent and with TMS as an internal standard. Infrared spectra were obtained on a Bruker Vector-22 instrument.

General procedure for the solid-phase synthesis of 4,6-disubstituted 4,5-dihydro-3(2H)-pyridazinones: To resin **3** (500 mg, 1.1 mmol/g) swollen in 5ml DMF for 1h, ⁸ was added anhydrous sodium acetate (5.5 mmol), acetic acid (0.3 ml), and α -bromomethyl ketone (5.5 mmol). The mixture was stirred at room temperature for 24 h to afford resin **4**. The resin **4** was filtered off and washed successively with H2O, EtOH, and CH2Cl2 and dried *in vacuo*. Then hydrazine hydrate (5.5 mmol) was added to the suspension of the resin **4** in DMF. The mixture was stirred at room temperature for 17h before the resin was filtered with EtOAc. The filtrate was washed with H_2O and dried over MgSO4. Evaporation of the solvent *in vacuo* afforded the products **5** as oils directly.

4-Butyl-6-phenyl-4,5-dihydro-3(2H)-pyridazinone (**5a**): 1H NMR (400 MHz, CDCl3) δ 0.89 (t, 3H, *J*=6.8 Hz), 1.34–1.48 (m, 5H), 1.72–1.83 (m, 1H), 2.62–2.79 (m, 2H), 3.03–3.09 (dd, 1H, *J1* = 6.7Hz, *J2* = 16.7Hz), 7.26–7.73 (m, 5H), 8.46 (s,1H). Anal: calcd for $C_{14}H_{18}N_2O$, C, 73.01; H, 7.88; N, 12.16, Found C, 73.10, H, 7.75, N, 12.11 %. MS *m/z* (relative intensity) 230 (M+, 25), 173 (100), 103 (26), 77 (45), IR δ (cm-1): 3217, 1670, 1612, 1493 cm–1.

4-Butyl-6-(4-chlorophenyl)-4,5-dihydro-3(2H)-pyridazinone (**5b**): ¹H NMR (400 MHz, CDCl₃) δ 0.89 (t, 3H, $J = 6.8$ Hz), 1.32–1.44 (m, 5H), 1.86–1.89 (m, 1H), 2.51-2.99 (m, 2H), 3.01-3.05 (dd, 1H, *J*₁=6.76Hz, *J*₂=16.76Hz), 7.37–7.39 (d, 2H, *J* = 8.5 Hz), 7.65–7.67 (d, 2H, $J = 8.7$ Hz), 8.73 (s, 1H). Anal: calcd for C₁₄H₁₇ClN₂O, C, 63.51; H, 6.47; N, 10.58, Found C, 63.44; H, 6.32; N, 10.65 %. MS *m/z* (relative intensity) 264 (25), 266 (8) (M+), 207 (100), 137 (17), 77 (36). IR δ (cm-1): 3220, 1677, 1613, 1493 cm–1.

4-Butyl-6-(4-methylphenyl)l-4,5-dihydro-3(2H)-pyridazinone (**5c**): ¹H NMR (400 MHz, CDCl₃) δ 0.89 (t, 3H, $J = 6.8$ Hz), 1.34-1.44 (m, 5H), 1.72–1.80 (m, 1H), 2.37 (s, 1H), 2.49–2.99 (m, 2H), 3.01–3.05 (dd, 1H, *J1* = 6.7 Hz, *J2* = 16.7 Hz), 7.24–7.26 (d, 2H, *J* = 8.0 Hz), 7.61–7.63(d, 2H, *J* = 8.2 Hz), 8.68 (s, 1H). Anal: calcd for C₁₅H₂₀N₂O, C, 73.74; H, 8.25; N, 11.47, Found C, 73.87; H, 8.21; N, 11.55. MS *m/z* (relative intensity) 244 (M+, 35), 187 (100), 117 (32), 91 (48) IR δ (cm⁻¹): 3220, 1666, 1617, 1470 cm⁻¹.

4-Ethyl-6-phenyl-4,5-dihydro-3(2H)-pyridazinone (**5d**): 1H NMR (400 MHz, CDCl3) δ 1.01 (t, 3H, *J* = 5.4 Hz), 1.56–1.62 (m, 2H), 2.46–2.95 (m, 2H), 3.02–3.08 (dd, 1H, $J_1 = 6.8$ Hz, $J_2 = 16.8$ Hz),

7.26–7.74 (m, 5H), 8.86 (s, 1H), Anal: calcd for $C_{12}H_{14}N_2O$, C, 71.26; H, 6.98; N, 13.85 , Found C, 71.35; H, 6.81; N, 13.92 %. MS *m/z* (relative intensity) 202 (M+, 100), 174 (98), 103 (52), 71 (60). IR δ (cm⁻¹): 3222, 1674, 1612, 1465 cm⁻¹.

4-Ethyl-6-(4-chlorophenyl)-4,5-dihydro-3(2H)-pyridazinone (**5e**): ¹H NMR (400 MHz, CDCl₃) δ 1.01 (t, 3H, $J = 7.2$ Hz), 1.55–1.93 (m, 2H), 2.41–2.99 (m, 2H), 3.01-3.05 (dd, 1H, $J_1 = 6.7$ Hz, $J_2 = 16.7$ Hz), 7.21–7.23 (d, 2H, *J* = 8.5 Hz), 7.62–7.64 (d, 2H, *J* = 8.4 Hz), 8.76(s, 1H). Anal: calcd for C₁₂H₁₃ClN₂O, C, 60.89; H, 5.54; N, 11.84, Found C, 60.77; H, 5.67; N, 11.79 %, MS *m/z* (relative intensity) 236 (100), 238 (34), 208 (90), 179 (16), 137 (43), 102 (43), 71(98), IR δ $(cm⁻¹)$: 3221, 1677, 1614, 1497 cm⁻¹.

4-Ethyl-6-(4-methylphenyl)-4,5-dihydro-3(2H)-pyridazinone (**5f**): ¹H NMR (400 MHz, CDCl₃) δ 1.01 (t, 3H, *J* = 7.5 Hz), 1.55–1.93 (m, 2H), 2.38 (s, 3H), 2.41–2.99 (m, 2H), 3.01–3.05 (dd, 1H, *J1* = 6.7 Hz, $J_2 = 16.7$ Hz), 7.21–7.23 (d, 2H, $J = 7.9$ Hz), 7.61–7.63 (d, 2H, $J = 8.2$ Hz), 8.70 (s, 1H). Anal: calcd for C₁₃H₁₆N₂O, C, 72.19; H, 7.46; N, 12.95; Found C, 72.24; H, 7.34; N, 12.81 %. MS *m/z* (relative intensity) 216 (M+, 100), 187 (48), 172 (2), 117 (19), 71(27), IR δ (cm⁻¹): 3221, 1677, 1614, 1497 cm⁻¹.

4-Benzyl-6-phenyl-4,5-dihydro-3(2H)-pyridazinone (**5g**): 1H NMR (400 MHz, CDCl3) δ 2.62-2.69 (m, 2H), 2.83–2.87 (m, 2H), 3.35–3.36 (dd, 1H, J_1 =,3.5 Hz, J_2 =,16.6 Hz), 7.16–7.18, (d, 2H, *J* = 6.6 Hz), 7.23–7.63 (m, 8H), 8.53 (s, 1H). Anal: calcd for $C_{17}H_{16}N_2O$: C, 77.25; H, 6.10; N, 10.60, Found C, 77.51; H, 6.03; N, 10.75 %. MS *m/z* (relative intensity) 264 (100), 173 (72), 103 (19), 91 (63), IR δ (cm⁻¹): 3207, 1669, 1612, 1494 cm⁻¹.

4-Benzyl-6-(4-chlorophenyl)-4,5-dihydro-3(2H)-pyridazinone (**5h**): 1H NMR (400 MHz, CDCl3) δ 2.61–2.72 (m, 2H), 2.78–2.83 (m, 2H), 3.30–3.34 (dd, 1H, $J_1 = 3.7$ Hz, $J_2 = 13.6$ Hz), 7.33–7.35 $(d, 2H, J = 6.8 \text{ Hz})$, 7.54–7.56 (d, 2H, $J = 6.7 \text{ Hz}$), 7.16-7.30 (m, 5H), 8.56 (s, 1H), Anal: calcd for C₁₇H₁₅ClN₂O, C, 68.34; H, 5.06; N, 9.38 , Found C, 68.47; H, 4.99; N, 9.41 %. MS *m/z* (relative intensity) 298 (49), 300 (17)(M+), 207 (35), 103 (15), 91 (100). IR δ (cm-1): 3252, 1672, 1611, 1452 cm–1.

4-Benzyl-6-(4-methylphenyl)-4,5-dihydro-3(2H)-pyridazinone (**5i**): 1H NMR (400 MHz, CDCl3) δ 2.36 (s, 3H), 2.62–2.71 (m, 2H), 2.77–2.85 (m, 2H), 3.30–3.34 (dd, 1H, $J_1 = 3.4$ Hz, $J_2 = 13.5$ Hz), 7.16–7.49 (m, 7H), 7.50–7.52(d, 2H, *J* = 8.1 Hz), 8.51(s, 1H). Anal: calcd for $C_{18}H_{18}N_2O$, C, 77.67; H, 6.52; N, 10.06, Found C, 77.74; H, 6.41; N, 10.13 %. MS *m/z* (relative intensity) 278 (M+, 100), 187 (46), 103 (10), 91 (64). IR δ (cm-1): 3221, 1662, 1614, 1495 cm–1.

The work was supported by the National Nature Science Foundation of China (Project No.20072032)

Received 11 November 2002; accepted 25 June 2003 Paper 02/1664

References

- 1 (a) H. McNab, *Chem. Soc. Rev.* 1978, **7**, 345-358; (b) B.C. Chen, *Heterocycles* 1991, **32**, 529-597; (c) F.C. Ye, B.C. Chen and X. Huang, *Synthesis* 1988, 317;(d) X. Huang and B.C. Chen, *Synthesis* 1986, 967.
- 2 F. Guillier, D. Orain and M. Bradley, *Chem. Rev*. 2000, **100**, 2091-2157.
- 3 B.A. Lorsbach and M.J. Kurth, *Chem. Rev*. 1999, **99**, 1541-1581.
- 4 I.W. James, *Tetrahedron* 1999, **55**, 4855-4946.
- 5 (a) M. Thyes, H.D. Lehman. J. Gries, H. Konig, Kretzschmar. J. Kunze, R. Lebkucher and D. Lenke, 1983, **26**, 800; (b) W.V. Curran and A. Ross, *J. Med. Chem*. 1974, **17**, 273. (c) J. Sircar, B.L. Duel, G. Bobowski and J. Bristol, *J. Med. Chem*. 1985, **28**, 1405; (d) W.G. Overend and L.F. Wiggins, *J. Chem. Soc*. 1947, 239.
- 6 G. Toth, S. Molnar, T. Tamas and I. Borbely, *Synth. Commun.* 1997, **27**, 3513-3523.
- 7 X. Huang and Z.X. Liu, *Tetrahedron Lett.* 2001, **42**, 7655-7657.
- 8 The loading of resin **3** was determined by reversed titration with hydrochloric acid after saponification with excess NaOH in EtOH.